![]() Sub-wavelength segmentation in measurement targets on substrates.
专利摘要:
公开号:NL2002932A1 申请号:NL2002932 申请日:2009-05-27 公开日:2009-12-03 发明作者:Maurits Van Der Schaar;Marcus Van De Kerkhof;Sami Musa 申请人:Asml Netherlands Bv; IPC主号:
专利说明:
SUB-WAVELENGTH SEGMENTATION IN MEASUREMENT TARGETS ON SUBSTRATES FIELD The present invention relates to methods of inspection usable, for example, in the manufacture of devices by lithographic techniques and to methods of manufacturing devices using lithographic techniques. BACKGROUND A lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. A lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In that instance, a patterning device, which is alternatively referred to as a mask or a reticle, may be used to generate a circuit pattern to be formed on an individual layer of the IC. This pattern can be transferred onto a target portion (e.g., including part of, one, or several dies) on a substrate (e.g., a silicon wafer). Transfer of the pattern is typically via imaging onto a layer of radiation-sensitive material (resist) provided on the substrate. In general, a single substrate will contain a network of adjacent target portions that are successively patterned. Known lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion at one time, and so-called scanners, in which each target portion is irradiated by scanning the pattern through a radiation beam in a given direction (the "scanning" direction) while synchronously scanning the substrate parallel or anti-parallel to this direction. It is also possible to transfer the pattern from the patterning device to the substrate by imprinting the pattern onto the substrate. In order to monitor the lithographic process, it is desirable to measure parameters of the patterned substrate, for example the overlay error between successive layers formed in or on it. There are various techniques for making measurements of the microscopic structures formed in lithographic processes, including the use of scanning electron microscopes and various specialized tools. One form of specialized inspection tool is a scatterometer in which a beam of radiation is directed onto a surface of the substrate and properties of the scattered or reflected beam are measured. By comparing the properties of the beam before and after it has been reflected or scattered by the substrate, the properties of the substrate can be determined. This can be done, for example, by comparing the reflected beam with data stored in a library or known measurements associated with known substrate properties. Two main types or scatterometer are known. Spectroscopic scatterometers directly a broadband radiation beam onto the substrate and measure the spectrum (intensity as a function of wavelength) or the radiation scattered into a particular narrow angular range. Angularly resolved scatterometers use a monochromatic radiation beam and measure the intensity of the scattered radiation as a function of angle. The pattern is transferred onto several successive resist layers on the substrate in order to build up a multi-layer structure with the pattern throughout its thickness. It is therefore desirable to ensure that the pattern in any given layer is exactly aligned with the pattern in the previous layer. The way that successive patterned layers are aligned is by having overlay targets in the layer, these overlay targets being detectable by an inspection beam that is projected by the projection system before the exposure beam is projected to apply the pattern. In order to leave as much space as possible on the substrate for the exposed pattern, the overlay targets are positioned in scribe lanes, which is the part of the substrate that will be sawn to separate the substrate into individual ICs, for example. Overlay targets have, in the past, tasks the form of stacked (in several or all of the layers) copper areas alternating with dielectric areas. Overlay targets may also be used for alignment or a substrate with respect to a substrate table or other fixed object. As lithographic techniques improve and narrower patterns are possible, narrower ICs are also possible and the area between the scribe lanes decreases. If the scribe lanes stay the same size while the "usable" area between them gets narrower, the ratio of unusable substrate to usable substrate increases, reducing efficiency of the substrate use. The present use of relatively large copper areas in the overlay targets in the scribe lanes means that the size of the scribe lanes is difficult to decrease and so inefficient use of substrate space is inevitable. Overlay targets are typically in the form of gratings made up or parallel bars. The pitch of the grating should be a similar order of magnitude to the product that is eventually to be manufactured on the substrate so that overlay to the correct accuracy can be measured. Presently, the minimum pitch available is around 400nm. However, modem designs generally require a pitch or 300nm or narrower. For this to be workable, the wavelength of the inspection beam used to irradiate the target would need to be less than 450nm. However, tuning tolerance with a beam this high in frequency would be very limited. SUMMARY [0006] It is desirable to create an overlay target on a substrate that will allow scribe lane space to be reduced and allow more efficient use of the space on a substrate. It is also desirable to create an overlay target on a substrate that will have features small enough to be or use for very small product designs, but which will also be measurable. [0007] According to an aspect of the invention, there is provided a target for use on a substrate, the target including an array of first regions alternating with second regions, including the first regions include structures oriented in a first direction and the second regions include structures oriented in a direction different from the first direction. [0008] According to another aspect of the present invention, there is provided a substrate including a target including an array of first regions alternating with second regions, the first regions include structures oriented in a first direction and the second regions include structures oriented in a direction different from the first direction. [0009] According to a further aspect of the present invention, there is provided an inspection method for inspecting the overlay of a substrate, including: providing, superimposed on the substrate, a target including an array of first regions alternating with second regions, the first regions including structures oriented in a first direction and the second regions including structures oriented in a direction different from the first direction; illuminating the target with a polarized inspection radiation beam; detecting the reflected polarized inspection beam from the target; and determining, from the properties of the reflected polarized inspection beam, whether the target is in alignment with the pattern. According to a yet further aspect of the present invention, there is provided a further inspection method for inspecting the overlay of a substrate, including: providing an array of first regions containing reflective structures superimposed on the pattern on a substrate ; providing an array of second regions containing reflective structures interleaved with the first regions, the reflective structures of the second regions being arranged perpendicularly to the reflective structures of the first regions; illuminating the first and second regions with a polarized inspection beam including a wavelength that is equal to or greater than the distance between the reflective structures multiplied by the refractive index of a material containing the reflective structures; detecting the reflected polarized inspection radiation beam; and determining, from the properties of the reflected polarized inspection beam, whether the first and second regions are in alignment with the pattern. [0011] According to a yet further aspect of the present invention, there is provided a method for creating a target on a substrate, including: depositing, onto the substrate, a layer containing an array of first regions alternating with second regions, including the first regions include structures oriented in a first direction and the second regions include structures oriented in a direction different from the first direction. [0012] According to a yet further aspect of the present invention, there is provided a device manufacturing method including projecting a patterned beam or radiation onto a substrate, including the substrate contains a target including an array of first regions alternating with second regions, the first regions include structures oriented in a first direction and the second regions include structures oriented in a direction different from the first direction. LETTER DESCRIPTION OF THE DRAWINGS Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which: [0014] Figure 1 depicts a lithographic apparatus in accordance with an embodiment of the invention; Figure 2 depicts a lithographic cell or cluster in accordance with an embodiment of the invention; Figure 3 depicts a first scatterometer in accordance with an embodiment of the invention; Figure 4 depicts a second scatterometer in accordance with an embodiment of the invention; Figure 5 depicts an overlay target according to the state of the art and according to an embodiment of the present invention; and Figure 6 depicts comparison of TE and TM polarized radiation as it reflects from different parts of the overlay target according to an embodiment of the present invention. DETAILED DESCRIPTION Figure 1 schematically depicts a lithographic apparatus. The apparatus includes an illumination system (illuminator) IL configured to condition a radiation beam B (e.g., UV radiation or DUV radiation); a patterning device support or support structure (e.g., a mask table) MT constructed to support a patterning device (e.g., a mask) MA and connected to a first positioner PM configured to accurately position the patterning device in accordance with certain parameters; a substrate table (e.g., a wafer table) WT constructed to hold a substrate (e.g., a resist-coated wafer) W and connected to a second positioner PW configured to accurately position the substrate in accordance with certain parameters; and a projection system (e.g. a refractive projection lens system) PL configured to project a pattern beamed to the radiation beam B by patterning device MA onto a target portion C (e.g. including one or more dies) of the substrate W. The illumination system may include various types of optical components, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components, or any combination thereof, to direct, shape, or control radiation. The patterning device support holds the patterning device in a manner that depends on the orientation of the patterning device, the design of the lithographic apparatus, and other conditions, such as for example whether or not the patterning device is hero in a vacuum environment. The patterning device support can use mechanical, vacuum, electrostatic or other clamping techniques to hold the patterning device. The patterning device support may be a frame or a table, for example, which may be fixed or movable as required. The patterning device support may ensure that the patterning device is at a desired position, for example with respect to the projection system. Any use of the terms "reticle" or "mask" may be considered synonymous with the more general term "patterning device." The term "patterning device" used should be broadly interpreted as referring to any device that can be used to impart a radiation beam with a pattern in its cross-section such as to create a pattern in a target portion of the substrate . It should be noted that the pattern imparted to the radiation beam may not exactly correspond to the desired pattern in the target portion of the substrate, for example if the pattern includes phase-shifting features or so called assist features. Generally, the pattern imparted to the radiation beam will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit. The patterning device may be transmissive or reflective. Examples of patterning devices include masks, programmable mirror arrays, and programmable LCD panels. Masks are well known in lithography, and include mask types such as binary, alternating phase shift, and attenuated phase shift, as well as various hybrid mask types. An example of a programmable mirror array employs a matrix arrangement of small mirrors, each of which can be individually tilted so as to reflect an incoming radiation beam in different directions. The tilted mirrors impart a pattern in a radiation beam, which is reflected by the mirror matrix. The term "projection system" used should be broadly interpreted as encompassing any type of projection system, including refractive, reflective, catadioptric, magnetic, electromagnetic and electrostatic optical systems, or any combination thereof, as appropriate for the radiation exposure being used, or for other factors such as the use of an immersion liquid or the use of a vacuum. Any use of the term "projection lens" may also be considered as synonymous with the more general term "projection system". As depicted here, the apparatus is of a transmissive type (e.g., employing a transmissive mask). Alternatively, the apparatus may be of a reflective type (e.g., employing a programmable mirror array or a type referred to above, or employing a reflective mask). The lithographic apparatus may be of a type having two (dual stage) or more substrate tables (and / or two or more mask tables). In such "multiple stage" machines the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposure. The lithographic apparatus may also be a type of at least a portion of the substrate may be covered by a liquid having a relatively high refractive index, e.g., water, so-to-fill space between the projection system and the substrate. An immersion liquid may also be applied to other spaces in the lithographic apparatus, for example, between the patterning device and the projection system. Immersion techniques are well known in the art for increasing the numerical aperture of projection systems. The term "immersion" as used does not mean that a structure, such as a substrate, must be submerged in liquid, but rather only means that liquid is located between the projection system and the substrate during exposure. Referring to Figure 1, the illuminator IL receives a radiation beam from a radiation source SO. The source and the lithographic apparatus may be separate entities, for example when the source is an excimer laser. In such cases, the source is not considered to be part of the lithographic apparatus and the radiation beam is passed from the source SO to the illuminator IL with the aid of a beam delivery system BD including, for example, suitable directing minors and / or a beam expander. In other cases the source may be an integral part of the lithographic apparatus, for example when the source is a mercury lamp. The source SO and the illuminator IL, together with the beam delivery system BD if required, may be refended to as a radiation system. The illuminator IL may include an adjuster AD to adjust the angular intensity distribution of the radiation beam. Generally, at least the outer and / or inner radial extent (commonly refined to as σ-outer and σ-inner, respectively) or the intensity distribution in a pupil plane or the illuminator can be adjusted. In addition, the illuminator IL may include various other components, such as an integrator IN and a condenser CO. The illuminator may be used to condition the radiation beam, to have a desired uniformity and intensity distribution in its cross-section. The radiation beam B is incident on the patterning device (e.g., mask) MA, which is hero on the patterning device support (e.g., mask table) MT, and is patterned by the patterning device. Having traversed the patterning device (eg mask) MA, the radiation beam B passes through the projection system PL, which is the beam onto a target portion C of the substrate W. With the aid of the second positioner PW and position sensor IF (eg interferometric device, linear encoder, 2-D encoder or capacitive sensor), the substrate table WT can be moved accurately, eg so as to position different target portions C in the path of the radiation beam B. Similarly, the first positioner PM and another position sensor (which is not explicitly depicted in Figure 1) can be used to accurately position the patterning device (eg mask) MA with respect to the path of the radiation beam B, eg after mechanical retrieval from a mask library, or during a scan. In general, movement of the patterning device support (eg mask table) MT may be realized with the aid of a long-stroke module (coarse positioning) and a short-stroke module (fine positioning), which form part of the first positioner PM . Similarly, movement of the substrate table WT may be realized using a long-stroke module and a short-stroke module, which form part of the second positioner PW. In the case of a stepper (as opposed to a scanner) the patterning device support (e.g. mask table) MT may be connected to a short-stroke actuator only, or may be fixed. Patterning device (e.g., mask) MA and substrate May be aligned using patterning device alignment marks M1, M2 and substrate alignment marks P1, P2. Although the substrate alignment marks as illustrated occupy dedicated target portions, they may be located in spaces between target portions (these are known as scribe-lane alignment marks). Similarly, in situations in which more than one provided on the patterning device (e.g., mask) MA, the patterning device alignment marks may be located between the dies. [0032] The depicted apparatus could be used in at least one of the following modes: 1. In step mode, the patterning device support (eg mask table) MT and the substrate table WT are kept essentially stationary, while an entire pattern imparted to the radiation beam is projected onto a target portion C at one time (ie a single static exposure). The substrate table WT is then shifted in the X and / or Y direction so that a different target portion can be exposed. In step mode, the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure. 2. In scan mode, the patterning device support (e.g., mask table) MT and the substrate table WT are scanned synchronously while a pattern is imparted to the radiation beam is projected onto a target portion C (i.e., a single dynamic exposure). The velocity and direction of the substrate table WT relative to the patterning device support (e.g., mask table) MT may be determined by the (de-) magnification and image reversal characteristics of the projection system PL. In scan mode, the maximum size of the exposure field limits the width (in the non-scanning direction) or the target portion in a single dynamic exposure, whereas the length of the scanning motion has the height (in the scanning direction) of the target portion. 3. In another mode, the patterning device support (eg mask table) MT is kept essentially stationary holding a programmable patterning device, and the substrate table WT is moved or scanned while a pattern is imparted to the radiation beam is projected onto a target portion C. In this mode, generally a pulsed radiation source is employed and the programmable patterning device is updated as required after each movement of the substrate table WT or in between successive radiation pulses during a scan. This mode of operation can be readily applied to maskless lithography that utilizes programmable patterning device, such as a programmable mirror array or a type as referred to above. Combinations and / or variations on the modes described above or use or entirely different modes or use may also be employed. As shown in Figure 2, the lithographic apparatus LA forms part of a lithographic cell LC, also sometimes referred to a lithocell or cluster, which also includes apparatus for perform pre-and post-exposure processes on a substrate. Conventionally these include spin coaters SC to deposit resist layers, developers DE to develop exposed resist, chill plates CH and bake plates BK. A substrate handler, or robot, RO picks up substrates from input / output ports I / Ol, 1/02, moves them between the different process apparatus and delivers then to the loading bay LB of the lithographic apparatus. These devices, which are often collectively referred to as the track, are under the control of a track control unit TCU which is itself controlled by the supervisory control system SCS, which also controls the lithographic apparatus via the LACU lithography control unit. Thus, the different apparatus can be operated to maximize throughput and processing efficiency. In order that the substrates that are exposed by the lithographic apparatus are exposed correctly and consistently, it is desirable to inspect exposed substrates to measure properties such as overlay errors between subsequent layers, line thicknesses, critical dimensions (CD), etc. If errors are detected, adjustments may be made to exposures or subsequent substrates, especially if the inspection can be done soon and fast enough that other substrates or the same batch are still exposed. Also, already exposed substrates may be stripped and reworked - to improve yield - or discarded - otherwise avoiding performing exposures on substrates that are known to be faulty. In a case where only some target portions or a substrate are faulty, further exposures can be performed only on those target portions which are good. An inspection apparatus is used to determine the properties of the substrates, and in particular, how the properties of different substrates or different layers of the same substrate vary from layer to layer. The inspection apparatus may be integrated into the lithographic apparatus LA or the lithocell LC or may be a stand-alone device. To enable most rapid measurements, it is desirable that the inspection apparatus measure properties in the exposed resist layer immediately after the exposure. However, the latent image in the resist has a very low contrast - there is only a very small difference in refractive index between the parts of the resist which have been exposed to radiation and those which have not - and not all inspection apparatus have sufficient sensitivity to make useful measurements of the latent image. Therefore measurements may be tasks after the post-exposure bake step (PEB) which is customarily the first step carried out on exposed substrates and increases the contrast between exposed and unexposed parts of the resist. At this stage, the image in the resist may be referred to as semi-latent. It is also possible to make measurements of the developed resist image - at which point either the exposed or unexposed parts of the resist have been removed - or after a pattern transfer step such as etching. The latter possibility limits the possibilities for rework or faulty substrates but may still provide useful information. Figure 3 depicts a scatterometer SMI which may be used in an embodiment of the present invention. It includes a broadband (white light) radiation projector 2 which projects radiation onto a substrate W. The reflected radiation is passed to a spectrometer detector 4, which measures a spectrum 10 (intensity as a function of wavelength) or that specular reflected radiation. From this data, the structure or profile giving rise to the detected spectrum may be reconstructed by processing unit PU, e g. by Rigorous Coupled Wave Analysis and non-linear regression or by comparison with a library of simulated spectra as shown at the bottom of Figure 3. In general, for the reconstruction the general form of the structure is known and some parameters are assumed from knowledge of the process by which the structure was made, leaving only a few parameters or the structure to be determined from the scatterometry data. Such a scatterometer may be configured as a normal-incidence scatterometer or an oblique-incidence scatterometer. Another scatterometer SM2 that may be used with an embodiment of the present invention is shown in Figure 4. In this device, the radiation emitted by radiation source 2 is focused using lens system 12 through interference filter 13 and polarizer 17, reflected by partially reflected surface 16 and is focused on substrate W via a microscope objective lens 15, which has a high numerical aperture (NA), preferably at least 0.9 and more preferably at least 0.95. Immersion scatterometers may have lenses with numerical apertures over 1. The reflected radiation then transmits through partially reflective surface 16 into a detector 18 in order to have the scatter spectrum detected. The detector may be located in the back-projected pupil plane 11, which is at the focal length of the lens system 15, however, the pupil plane may be re-imaged with auxiliary optics (not shown) onto the detector. The pupil plane is the plane in which the radial position of radiation defines the angle of incidence and the angular position defines azimuth angle of the radiation. The detector is preferably a two-dimensional detector so that a two-dimensional angular scatter spectrum or a substrate target 30 can be measured. The detector 18 may be, for example, an array or CCD or CMOS sensors, and may use an integration time or, for example, 40 milliseconds per frame. A reference beam is often used for example to measure the intensity of the incident radiation. To do this, when the radiation beam is incident on the beam splitter 16 part of it is transmitted through the beam splitter as a reference beam towards a reference mirror 14. The reference beam is then projected onto a different part of the same detector 18. A set of interference filters 13 is available to select a wavelength of interest in the range or, say, 405 - 790 or even lower, such as 200 - 300 nm. The interference filter may be tunable rather than including a set of different filters. A grating could be used instead of interference filters. The detector 18 may measure the intensity of scattered radiation at a single wavelength range, or the intensity separately at multiple wavelengths or integrated over a wavelength range. Furthermore, the detector may separately measure the intensity of transverse magnetic and transverse electric-polarized radiation (light) and / or the phase difference between the transverse magnetic and transverse electric-polarized radiation (light). Using a broadband radiation (light) source (i.e., one with a wide range of radiation (light) frequencies or wavelengths - and therefore of colors) is possible, which gives a large etendue, allowing the mixing or multiple wavelengths. The variety of wavelengths in the broadband preferably each has a bandwidth or δλ and a spacing or at least 2 δλ (i.e. twice the bandwidth). Several "sources" or radiation can be different portions or an extended radiation source which have been split using fiber bundles. In this way, angle resolved scatter spectra can be measured at multiple wavelengths in parallel. A 3-D spectrum (wavelength and two different angles) can be measured, which contains more information than a 2-D spectrum. This allows more information to be measured which increases metrology process robustness. This is described in more detail in EP1,628,164A. To measure properties of the exposed pattern on a substrate, a test pattern may be used that has known (or at least measurable) parameters. This test pattern may be known as a mark or target 30. The target 30 on substrate May be a grating, which is printed such that after development, the bars are formed or solid resist lines. The bars may alternatively be etched into the substrate. This pattern is sensitive to chromatic aberrations in the lithographic projection apparatus, particularly the projection system PL, and illumination symmetry and the presence of such aberrations will manifest themselves in a variation in the printed grating. Due, the scatterometry data or the printed gratings is used to reconstruct the gratings. The parameters of the grating, such as line widths and shapes, may be input to the reconstruction process, performed by processing unit PU, from knowledge of the printing step and / or other scatterometry processes. It is desirable to ensure that each time the exposure beam is projected onto the substrate, it is aligned with the pattern already existing on the substrate. The alignment of one layer with another is known as overlay. In order to measure the overlay or subsequent layers on a substrate, overlay targets are present in a number of the layers of resist. The overlay targets may be the same targets that are used to measure the alignment of the projection system and patterning device with respect to the substrate and to the existing pattern on the substrate. A radiation beam (which may be from the same source as - or a different source from - the exposure beam that will expose each layer or resist thus creating a pattern on each layer) is reflected from the overlay target and diffracts. Any misalignment of the overlay target with one underneath it in a previously exposed layer may give rise to specific corresponding features in the diffraction spectrum or the reflected radiation beam. These features can be compared to a library or features to enable the determination of the overlay error that caused the diffraction spectrum feature (usually measured as an asymmetry in the first diffraction order or the diffraction spectrum). [0048] For processing reasons, the overlay target dimensions should resemble the device / product dimensions to guarantee alignment accuracy. The overlay target may be in a scribe lane, which is an area between product ("in-die") areas that has been destroyed during sawing of the substrate into its component products. Alternatively, the overlay target may be in-that, but should not interact with the product. Generally, the reason to have the overlay target in the scribe lane is that the precious real estate or the substrate reserved for the product is less likely to be compromised or filled up. However, there are many marks and targets that should be in the scribe lane and so it is desirable to be able to produce an overlay target that can be included in-and that will not interact with the product. The key to having overlay targets in that but not interacting with the exposure of the pattern is to have overlay targets that can be inspected by the scattering or an inspection beam, but that does not scatter an exposure beam. This may lead to overlay targets being incorporated into the pattern, without compromising the pattern. This, in turn, reduces the space required in scribe lanes. [0050] An embodiment of the present invention uses the fact that the exposure wavelength may be much narrower than the inspection wavelength. An inspection beam may be infrared radiation or visible radiation (light), for example (ie any wavelength that will not affect the resist layers on the substrate), while an exposure wavelength is usually ultra-violet or similar, thus having a narrower wavelength than the inspection beam. The top figure of Figure 5 shows a section or a standard overlay target. The grating includes bars 50 with spaces 52 in between them. The width or critical dimension (CD) of the bar 50 of the grating may have a width a. The pitch b of the grating is the distance before the pattern of bars and spaces repeats; in this example, one bar 50 and one space 52 (as all of the bars and spaces are the same width). Ways to change the relationship of the CD and pitch have been considered in the past. Interlaced gratings with different CDs and / or different pitches give different effective pitches and duty cycles (CD divided by pitch). However, even with interlaced gratings, the duty cycle has typically been the order of 50% and the pitch, or the order of 400, 500, 750 or 100,000. Modem product designs need overlay to be measurable for smaller sizes. Pitches or 300nm or less are desirable. However, for this sort of size, the inspection radiation would need to have a wavelength or about 450nm or less. The tolerance for tuning the polarization, wavelength, aperture, etc., is very limited with this sort of wavelength. An embodiment of the present invention seeks to solve this size problem by subsegmenting areas of the overlay target. The typical dimensions of the sub-segmentation can be around or narrower than the wavelength or the inspection beam but can be larger than the wavelength or an exposure beam. This can make the areas transparent for the wavelength of the exposure beam; i.e. so the exposure beam cannot sense the structures and therefore not be used for inspection. It will be appreciated that the target may be produced with the smaller lines 42 and spaces 40 directly, rather than sub-segmenting or an existing grating being part of a manufacturing process. In the embodiment shown in the bottom of Figure 5, both the lines (or bars 50) as well as the spaces 52 or the grating (the target 30) are sub-segmented, each substantially perpendicularly respectful to each other. In other words, the bars 50 are segmented into narrower bars 42 in one direction, for example, perpendicular to the grating vector direction 60. There are still spaces 40 between the smaller bars 42. However, the spaces 52 of the original target are also sub-segmented, preferably in a direction perpendicular to the direction of the bars 42, ie parallel to the grating vector direction 60. There are therefore regions 50a and 52a with sub-segmentations perpendicular to each other alternating along the grating vector direction. These segments or regions may have the same pitch as each other, or different pitches from each other. The bars 42 need not be perpendicular to each other. Any difference in orientation that affects a polarized incident beam may be used differently. [0055] When sub-segmenting the target with pitches narrower than λ / η, with n being the refractive index of the material in which the target was created and λ being the wavelength of the inspection radiation, the sub-segmented regions 50a and 52a will behave as artificial anisotropic materials that have different effective refractive indices alternating along the grating vector direction 60. The array of alternating regions 50a and 52a may extend perpendicularly to the grating vector direction 60, too. The key with an anisotropic material is that orthogonally polarized beams (transverse magnetic (TM) and transverse electric (TE) beams) will act differently in the different segments 50a and 52a or the sub-segmented target because of the effective refractive index of the segments 50a and 52a will be different. This concept is illustrated in Figure 6. Figure 6 shows the calculated effective refractive indices or a sub-wavelength grating as a function of the duty cycle (CD / pitch, where pitch is labeled with reference letter c) for TE-and TM-polarized radiation (light) incident on the grating. From Figure 6, it can be seen that TE and TM polarized beams can experience different effective refractive indices as they propagate through a sub-wavelength grating. Applying the segmentation in the perpendicular fashion shown in Figure 5 makes use of this. For instance, an inspection beam which is polarized along the grating vector 60 of the sub-segmented target will be experienced as a TE-beam for the part 52a that is subsegmented along the grating vector direction 60 and as a TM-beam for the part 50a that is sub-segmented perpendicular to this vector 60. This means the different regions 50a, 52a or the target will have different effective refractive indices (also known as refractive index contrast), which is a requirement in order to give rise to a signal . By "signal", what is meant is a difference between the diffracted TM and TE beam intensities that may be measured by a detector or CCD camera. If there is a difference between the two polarized beams, a change in this difference if there is an overlay error is more easily noticed. As can be seen in Figure 6, the effective refractive index contrast can be optimized by choosing different duty cycles (CD / c) for the segmentation on the lines and spaces of the target and thus the signal can be maximized. By applying the sub-segmentation as described above, the pitch range favorable by the sensor may be provided. At the same time, narrower and more precise design requirements may be complied with. Moreover, this design offers the possibility to tune the duty cycle to maximize the 1st diffraction order signal, which is the diffraction order that usually provides the strongest signal (with the most easily measured asymmetry in the case of an overlay error). Overlay measurement may be carried out on two of the targets shown in the bottom of Figure 5 on top of each other or alternatively a 'normal' target may be superposed on a sub-segmented target, or vice-versa. As a separate benefit, sub-wavelength periodic arrays or structures (i.e. bars or lines 42) as described above may be created on the substrate using the exposure beam. Such gratings act as artificial crystals for the inspection wavelength. The macroscopic optical properties of such a crystal; for example, the effective real and imaginary parts of the refractive index, can be controlled accurately by the shape of the bars 42 and the periodicity of the 2-D arrays. This means that the macroscopic optical properties of the substrate may be tailored for the inspection wavelength. In particular, the inspection beam may be caused to scatter with a specific scatter spectrum when the overlay target is aligned with the projection system transmitting the inspection beam. A detector positioned to detect the scatter spectrum then calculates whether the inspection beam is aligned by its spectrum, and by how much it is misaligned by changed parameters in the spectrum. The tailoring of the optical properties of the substrate is a consequence of the fact that the wavelength of the exposure beam may be (much) narrower than the wavelength of the inspection beam. The optical properties for the wavelength of the inspection beam may be controlled by making use of the imaging capabilities of the wavelength of the exposure beam. By having these lines 42 and spaces 41 narrower than the inspection beam wavelength, but larger than the exposure beam wavelength, artificial materials are created with controlled optical properties. The optical properties may be the real (refractivity or reflectivity) and imaginary (absorption) part of the effective refractive index. Artificial materials with controlled optical properties for the wavelength inspection can be made by making use of lithographic techniques, i.e. when these inspection techniques are used in lithography, the lithographic apparatus itself may be used to create the overlay targets. By using targets with a grating period narrower than the wavelength of the inspection beam, the incident radiation (light) will not be able to resolve these features and therefore will see the structure as a homogenous medium. This homogenous medium will have an effective refractive index (both real and imaginary) that is dependent on the refractive indices of the material making up the structure and the geometry of the structure (i.e. the period and duty cycle) as described above. The benefit of this overlay target system is that of the optical properties of a substrate for the inspection wavelength may be created and tailored using the exposure wavelength but for the benefit of the inspection wavelength. The overlay targets can also be applied to other process layers, such as a deep trench layer, local inter-connect layers, etc. The sub-segmented gratings can be applied to overlay targets but also as anti-reflection layers. These overlay targets in substrates may also be known as photonic crystals or subwavelength surfaces that are etched into silicon substrates and exhibit antireflection characteristics. They may be made by holographically recording a crossed-grating into a photoresist mask followed by reactive-ion etching to transfer the primary mask onto the substrate (e.g., using the exposure beam). More information on how this sort of structure may be made may be found in "Antireflection behavior of silicon sub-wavelength periodic structures for visible light", Lalanne and Morris, Nanotechnology 8 (1997) 53-56 incorporated in its entirety by reference. Although specific reference may be made in this text to the use of lithographic apparatus in the manufacture of ICs, it should be understood that the lithographic apparatus described may have other applications, such as the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, flat-panel displays, liquid-crystal displays (LCDs), thin film magnetic heads, etc .. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms "wafer "or" die "Read may be considered as synonymous with the more general terms" substrate "or" target portion ", respectively. The substrate referred to may be processed, before or after exposure, in for example a track (a tool that typically applies to a layer of resist to a substrate and develops the exposed resist), a metrology tool and / or an inspection tool. Where applicable, the disclosure may be applied to such and other substrate processing tools. Further, the substrate may be processed more than once, for example in order to create a multi-layer IC, so the term substrate used may also refer to a substrate that already contains multiple processed layers. Although specific reference may have been made above to the use of the invention in the context of optical lithography, it will be appreciated that the invention may be used in other applications, for example imprint lithography, and where the context allows , is not limited to optical lithography. In imprint lithography a topography in a patterning device the pattern created on a substrate. The topography of the patterning device may be pressed into a layer or resist supplied to the substrate whereupon the resist is cured by applying electromagnetic radiation, heat, pressure or a combination thereof. The patterning device is moved out of the resist leaving a pattern in it after the resist is cured. The terms "radiation" and "beam" used include compass and all types of electromagnetic radiation, including ultraviolet (UV) radiation (eg having a wavelength of or about 365.355, 248.193.157 or 126 nm) and extreme ultra-violet (EUV) radiation (eg having a wavelength in the range of 5-20 nm), as well as particle beams, such as ion beams or electron beams. The term "lens", where the context allows, may refer to any one or combination of various types of optical components, including refractive, reflective, magnetic, electromagnetic and electrostatic optical components. While specific expired of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. For example, the invention may take the form of a computer program containing one or more sequences of machine-readable instructions describing a method as disclosed above, or a data storage medium (eg semiconductor memory, magnetic or optical disk) having such a computer program stored therein. The descriptions above are intended to be illustrative, not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the invention as described without departing from the scope or the clauses set out below. Other aspects of the invention are set out as in the following numbered clauses: 1. A target for use on a substrate, the target including an array of first regions alternating with second regions, according to the first regions include structures oriented in a first direction and the second regions comprise structures oriented in a direction different from the first direction. 2. The target according to clause 1, where the target is configured to measure overlay or layers on the substrate. 3. The target according to clause 1, where the target is configured to measure alignment or the substrate with respect to a fixed object. 4. The target according to clause 1, where the first regions include bars aligned in the first direction and the second regions include bars aligned in the second direction that is substantially orthogonal to the first direction. 5. The target according to clause 4, where the array comprises a grating vector direction and the bars of the first regions are aligned with the grating vector direction and the bars of the second regions are substantially perpendicular to the grating vector direction. 6. The target according to clause 1, each region comprising a periodic array of structures, the pitch of the periodic array being less than a wavelength (λ) or a polarized radiation beam for use with the target divided by a refractive index (n ) or a material in which the overlay target is provided. 7. The target according to clause 1, where the first regions comprise different effective refractive indices from the second regions. 8. The target according to clause 1, the array of first and second regions is arranged such that a polarized radiation beam reflecting from the surface of the target acts as a TE-polarized beam when reflecting from the first regions and as a TM- polarized beam when reflecting from the second regions. 9. The target according to clause 1, according to a pattern and periodicity of the structures in the first and second regions affect the real and imaginary parts or a refractive index of a material containing the structures. 10. The target according to clause 1, the array forms an anisotropic target. 11. The target according to clause 1, where the array comprises a photonic crystal. 12. The target according to clause 1, where the array is 2-dimensional. 13. A substrate comprising a target comprising an array of first regions alternating with second regions, including the first regions comprising structures oriented in a first direction and the second regions comprising structures oriented in a direction different from the first direction. 14. The substrate according to clause 13, where the target is applied to one or more resist layers on the substrate. 15. The substrate according to clause 13, where the target is applied to a deep trench layer. 16. The substrate according to clause 13, where the target is applied to a process layer in a lithographic apparatus. 17. The substrate according to clause 13, where the target is used in a stacked configuration. 18. An inspection method for inspecting the overlay of a substrate, including: providing, superimposed on the substrate, targeting an array of first regions alternating with second regions, the first regions including structures oriented in a first direction and the second regions comprising structures oriented in a direction different from the first direction; illuminating the target with a polarized inspection radiation beam; detecting the polarized inspection radiation beam reflected from the target; and determining, from the reflected polarized inspection beam, whether the target is in alignment with the pattern. 19. An inspection method for inspecting the overlay of a substrate substrate, including: providing an array of first regions containing reflective structures superimposed on the substrate substrate; providing an array of second regions containing reflective structures interleaved with the first regions, the reflective structures of the second regions being arranged substantially perpendicularly to the reflective structures of the first regions; illuminating the first and second regions with a polarized inspection beam comprising a wavelength that is equal to or greater than the distance between the reflective structures multiplied by the refractive index of a material containing the reflective structures; detecting the polarized inspection radiation beam reflected from the first and second regions; and determining, from the reflected polarized inspection beam, whether the first and second regions are in alignment with the pattern. 20. A method for creating a target on a substrate, including: depositing, onto the substrate, a layer containing an array of first regions alternating with second regions, bearing the first regions include structures oriented in a first direction and the second regions include structures oriented in a direction different from the first direction. 21. The method according to clause 20, a distance between the structures is substantially equal to or less than a wavelength or an intended inspection radiation beam divided by a refractive index of the layer deposited on the substrate. 22. The method according to clause 20, the distance between the structures is greater than the wavelength or an intended exposure beam. 23. A device manufacturing method including projecting a patterned beam of radiation onto a substrate, containing the substrate contains a target including an array of first regions alternating with second regions, containing the first regions include structures oriented in a first direction and the second regions comprise structures oriented in a direction different from the first direction. 24. A device manufactured according to the method of clause 23.
权利要求:
Claims (1) [1] A lithography device comprising: an illumination device adapted to provide a radiation beam; a carrier constructed to support a patterning device, the patterning device being capable of applying a pattern in a section of the radiation beam to form a patterned radiation beam; a substrate table constructed to support a substrate; and a projection device adapted to project the patterned radiation beam onto a target area of the substrate, characterized in that the substrate table is adapted to position the target area of the substrate in a focal plane of the projection device.
类似技术:
公开号 | 公开日 | 专利标题 EP2219078B1|2017-11-15|Inspection apparatus for lithography US7911612B2|2011-03-22|Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method US8111398B2|2012-02-07|Method of measurement, an inspection apparatus and a lithographic apparatus US7564555B2|2009-07-21|Method and apparatus for angular-resolved spectroscopic lithography characterization US7619737B2|2009-11-17|Method of measurement, an inspection apparatus and a lithographic apparatus US9746785B2|2017-08-29|Sub-wavelength segmentation in measurement targets on substrates US7724370B2|2010-05-25|Method of inspection, a method of manufacturing, an inspection apparatus, a substrate, a mask, a lithography apparatus and a lithographic cell US7599064B2|2009-10-06|Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method, substrate for use in the methods US9280065B2|2016-03-08|Inspection apparatus to detect a target located within a pattern for lithography US20080036984A1|2008-02-14|Method and apparatus for angular-resolved spectroscopic lithography characterization US20110028004A1|2011-02-03|Inspection Method and Apparatus, Lithographic Apparatus, Lithographic Processing Cell and Device Manufacturing Method NL2003292A|2010-03-15|A substrate, a method of measuring a property, an inspection apparatus and a lithographic apparatus. JP2009081436A|2009-04-16|Method of measuring overlay error, inspection apparatus, and lithographic apparatus JP5525547B2|2014-06-18|How to find characteristics US8502955B2|2013-08-06|Method of determining a characteristic US20110102774A1|2011-05-05|Focus Sensor, Inspection Apparatus, Lithographic Apparatus and Control System
同族专利:
公开号 | 公开日 TWI500094B|2015-09-11| US9746785B2|2017-08-29| IL209627D0|2011-02-28| WO2010009930A1|2010-01-28| TW201005849A|2010-02-01| IL209627A|2016-05-31| US20110204484A1|2011-08-25|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US5601957A|1994-06-16|1997-02-11|Nikon Corporation|Micro devices manufacturing method comprising the use of a second pattern overlying an alignment mark to reduce flattening| US6420791B1|1999-11-23|2002-07-16|United Microelectronics Corp.|Alignment mark design| US7068833B1|2000-08-30|2006-06-27|Kla-Tencor Corporation|Overlay marks, methods of overlay mark design and methods of overlay measurements| WO2002065545A2|2001-02-12|2002-08-22|Sensys Instruments Corporation|Overlay alignment metrology using diffraction gratings| US20030002043A1|2001-04-10|2003-01-02|Kla-Tencor Corporation|Periodic patterns and technique to control misalignment| DE10142316A1|2001-08-30|2003-04-17|Advanced Micro Devices Inc|Semiconductor structure and method for determining critical dimensions and overlay errors| US7463367B2|2004-07-13|2008-12-09|Micron Technology, Inc.|Estimating overlay error and optical aberrations| US6912331B2|2002-03-12|2005-06-28|Cambrius Inc.|Periodic electromagnetic waveguide structures with controlled polarization properties| US6982793B1|2002-04-04|2006-01-03|Nanometrics Incorporated|Method and apparatus for using an alignment target with designed in offset| US20040066517A1|2002-09-05|2004-04-08|Hsu-Ting Huang|Interferometry-based method and apparatus for overlay metrology| SG125922A1|2002-09-20|2006-10-30|Asml Netherlands Bv|Device inspection| EP2204697A3|2002-09-20|2012-04-18|ASML Netherlands B.V.|Marker structure, lithographic projection apparatus, method for substrate alignment using such a structure, and substrate comprising such marker structure| US7230703B2|2003-07-17|2007-06-12|Tokyo Electron Limited|Apparatus and method for measuring overlay by diffraction gratings| US7791727B2|2004-08-16|2010-09-07|Asml Netherlands B.V.|Method and apparatus for angular-resolved spectroscopic lithography characterization| KR100898470B1|2004-12-03|2009-05-21|샤프 가부시키가이샤|Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper| US7323784B2|2005-03-17|2008-01-29|Taiwan Semiconductor Manufacturing Co., Ltd.|Top via pattern for bond pad structure| JP4520429B2|2005-06-01|2010-08-04|エーエスエムエルネザーランズビー.ブイ.|Application of two-dimensional photonic crystals to alignment equipment| US7687925B2|2005-09-07|2010-03-30|Infineon Technologies Ag|Alignment marks for polarized light lithography and method for use thereof| KR100715280B1|2005-10-01|2007-05-08|삼성전자주식회사|Method of measuring overlay accuracy using an overlay key| US7573584B2|2006-09-25|2009-08-11|Asml Netherlands B.V.|Method and apparatus for angular-resolved spectroscopic lithography characterization| US7545520B2|2006-11-15|2009-06-09|Asml Netherlands B.V.|System and method for CD determination using an alignment sensor of a lithographic apparatus| US8004678B2|2007-06-26|2011-08-23|Intel Corporation|Wafer level alignment structures using subwavelength grating polarizers|JP5623033B2|2009-06-23|2014-11-12|ルネサスエレクトロニクス株式会社|Semiconductor device, lithography method, and manufacturing method of semiconductor device| CN104541357B|2012-07-10|2018-01-23|株式会社尼康|Mark and forming method thereof and exposure device| US9727047B2|2014-10-14|2017-08-08|Kla-Tencor Corp.|Defect detection using structural information| KR102048794B1|2015-04-21|2020-01-08|에이에스엠엘 네델란즈 비.브이.|Instrumentation methods and devices, computer programs and lithography systems| US9530199B1|2015-07-13|2016-12-27|Applied Materials Israel Ltd|Technique for measuring overlay between layers of a multilayer structure| KR102104843B1|2015-10-02|2020-04-28|에이에스엠엘 네델란즈 비.브이.|Measurement methods and devices, computer programs and lithography systems| CA2924160A1|2016-03-18|2017-09-18|Chaji, Reza|Maskless patterning| WO2018125574A1|2016-12-31|2018-07-05|Vuzix Corporation|Imaging light guide with expanded light distribution| US11086059B2|2017-06-13|2021-08-10|Vuzix Corporation|Image light guide with expanded light distribution overlapping gratings| US11022889B2|2017-11-13|2021-06-01|Taiwan Semiconductor Manufacturing Co., Ltd.|Overlay-shift measurement system and method for manufacturing semiconductor structure and measuring alignment mark of semiconductor structure|
法律状态:
2010-02-01| AD1A| A request for search or an international type search has been filed|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US12904908P| true| 2008-06-02|2008-06-02| US12904908|2008-06-02| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|